第70章 难住数学教授的题目

简单的测试,让数院的周海教授看到了徐川的数学功底,也有些羡慕物院的陈正平。

能在刚进入大学阶段就拥有堪比研究生功底的学生,他怎么就没有遇到过呢?

虽然没有人规定一名学生不能有两名老师,且尽管是完全不同的两科目,他也不好厚着脸皮去和陈正平抢人。

“周老师,我有个问题想请教一下。”周海准备离开,但被徐川喊住了。

“哦?是什么问题,说来听听。”周海有些好奇的问道。

徐川从椅子上取下挂着的书包,从里面掏出了一个灰色的笔记本,翻开找到这两天的笔迹。

确认没有找错后递给了周海。

“周老师,这是我这两天在读《线性算子的因式分解与巴拿赫空间的几何性质》时列出来的一些问题,我推衍到一半解不开了,您帮忙看看?”

“行,我看看。”

周海伸手接过了笔记本,饶有兴致的看去。

刚才的简单询问虽然让他看到了徐川的数学功底,但却没有看到他的极限。

而能难住他的题目,必定能代表学识抵达了何方。

就让他看看这名学生的深浅好了。

“这字,真漂亮。”

笔记本入手,上面的整洁字迹就让周海心中赞扬了一声。

说实话,搞数学的,真就没几个字写的好看的。

当然,搞数学的也不需要自己的字有多好看,研究阶段只要自己写出来的东西能看懂就行。

这就跟搞编程的一样,自己写出来的代码,只要能运行,自己能看懂是啥意思啥功能就行了。

至于有没有注释什么的,那重要吗?

不重要。

至于真要证实或者研究出来了,大不了再费点功夫将论文敲到电脑里面去嘛。

所以基本上数学老师和数学家的字迹都是龙飞凤舞的。

“weylsw:pce算子的特征值分布与计算。”

“定理一:假设Ωr是有界开区域(不对边界的正则性做要求),那么存在单调上升的无界序列{λk}满足:0ap;lt;λ≤λ≤,lik→∞λk=+∞。”

“定理二:若Ω是立方体区域,也即形如[a,b]*[a,b]”

“定理三:.”

“若n(λk)是有界开区域Ω上的特征值计数函数,那么,是否能在r3中构造了一对等谱非等距同构分形鼓,并在此基础上,证明其波数目函数有精确的

笔记本上的字迹入目,周海的目光就全聚集到了这上面。

“等谱非等距同构和分形鼓数学方面的问题吗?”

“在r3的基础上构建一个等谱非等距同构分形鼓来证明波数目函数的

“能利用区域单调性和极小性原理给出特征值的一个刻画吗?”

“唔,这个方法好像行不通的样子?”

随着思索的不断进行,周海的眉头也逐渐紧皱了起来。

从一开始以为没什么大不了可以信手拈来解决问题的状态,到现在陷入沉思找不到出路。

他的注意力已经全都聚焦在手中的灰色笔记本上了,甚至没有管徐川,他直接拿着手中的笔记本就回到了讲台上,从讲台上拾起一支白色的粉笔,开始在黑板上演算起来。

n(λ)=|Ω|λn/2+o(λn/2).

定义:h(Ω)={u∈ζ(Ω)|uqi∈h(qi),i∈i},h(Ω)+{u∈ζ.}

自然有包含关系::h(Ω)

周海的举动,自然引起了正在参加测试解答题目同学的注意。

大伙纷纷抬起头看向黑板,想看看教授正在些什么东西。

但当黑板上的数学符号映入眼帘中时,除了徐川外,其他的同学人都懵了。

周教授他这,是在写什么?怎么一个字都看不懂了?

“川神,周教授这是在写些神马东东?你刚刚给他递了啥问题?”

坐在徐川身边的一名同学凑了过来小声的好奇询问。

他刚刚亲眼看到川神给周海教授递了个本子,似乎是询问了一个问题的样子?然后周教授就神不守舍的上去演示去了?

应该是个问题,但这演示推到的到底是啥子东西?而且到底是什么问题能难住一名数学教授?

“拉普拉斯算子特征值分布与计算方面的问题。”

徐川盯着黑白上的算式,目不转睛的回道。

这些算式很明显是周海教授在对问题的推衍,对他有一些启发,但不算多,顶多透过这种思路排除掉一条路线,做不到解决这个问题。

“拉普拉斯算子是什么东西?”

旁边的同学一脸绝望的问道,黑板上的数学符号看不懂也就算了,现在怎么连同学的回答都听不懂了?

同是一所学校一个班级的学生,同在一堂课上听讲,差距真的已经大到这种地步了吗?

“哦,拉普拉斯算子是n维欧几里德空间中的一个二阶微分算子,是一个实值函数,大三才会学习到。”

徐川这下算是回过神了,笑着解释道。

这下身边的同学似懂非懂的点了点头,虽然他还是没用明白拉普拉斯算子这玩意到底是什么东西。

但好歹‘实值函数’这个名词他听懂了。

至于为啥大三才会学习到的东西,别人大一就开始研究了,他已经不想还说话了。

高考满分,io+ipho双金牌得主能和他们一样是普通人吗?

很显然不是。

所以人家大一就开始学习和研究大三的课程值得惊讶吗?

丝毫不值得。

甚至他还有种本就该如此的‘错觉’。